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Shock waves have been the subject of many Investigations; of these, we only 
mention papers Cl to 53. 

The present paper amplifies on the basic ideas proposed In [6] for the 
Investigation of the structure of shock waves In a viscous gas. It appears 
that for a hypoelastlc medium, within small strain accuracy, all dlscontlnu- 
oua quantities Inside a shock wave layer, vary In a similar manner. This 
circumstance permits the Investigation of shock wave propagation In a hypo- 
elstlc medium. 

The equattis thue obtained are used to study the structure of a transverse 
shock wave In a Kelvin medium. 

1. In order to Investigate the structure cf shock waves, we Introduce a 

moving coordinate system (n,, x,, w,) whose origin lies on some middle sur- 

face Z , which Is located within the shock wave layer with the (xl, xa) 

plane tangent to that surface. 

Utilizing the symbol b to denote differentiation with respect to time, 

the equations of conservation of mass and momentum, respectively, take the 

form 
(1-l) 

(1.2) 

Within the shock wave layer, the first term In the left-hand side of (1.1) 

and the first terms In the left- and right-hand sides of (1.2) are large In 

comparison with the remaining terms. 

In the case of unsteady flow, the middle surface C will move with velo- 

city 0 . The distance from the leading shock front surface to X will be 

denoted by h+, and that from the trailing shock front surface to Z , by h.-. 

Hence, the sum (h++ h-) I h Is the shock layer thlctiess. It Is assumed 

that the position of the surface X at any given time Is known from nonvls- 

cous flow considerations. As the viscosity goes to zero, both shock fronts 

approach to the surface Z . 
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The various discontinuous functions generally undergo their basic changes 

at different distances from C . Therefore, each dlscont~nuous function has 

its own corresponding, shock layer thickness. We denote the shock layer 

thicknesses for P, vI and o,, by h’, h,t and hif , respectively, the 
full thicknesses being given by 

h’ + h- = h, hi+ + hi- = hi, h*i+ + hj- = hij (1.3) 
L+f?t P", al* and o,,*be, respectively, the density, velocity and stresses 

on c . Then the thicknesses of the shock layer are given by 

Here it is assumed that the gradients of the various functions within the 

shock wave are large while the corresponding thicknesses are small. It should 

be noted that this is not the only way of specifying the shock layer thick- 

ness. 

Certain relations may be established among the various shock layer thlck- 

nesses. Thus, neglecting higher order quantities in (1.1) and (l-2), we 

obtain 
Pa (3 - G) + pus,, = 0, (1.5) 

To (1.51, we adjoin the results of integrating these equations across the 

shock layer 
(1.6) 

Substituting (1.4) Into (1.5) and utilizing (1.6), we obtain 

k; = h*p* /p*, h? = h; (I -7) 

For high density gases, liquids and other rheologlcal substances, there is 

little variation In density across the shock wave, so that (1.7) yields 

k& z hk. For an ideal gas, Cl1 = oaa = Cs3 and cas = 0, so that 
h,,f = h,tt: = h&-, and (1.7) yields 

h'&$=&<=/&=t& (1.8) 

Thus, for shock wave propagation in an ideal gas, the basic change in all 

discontinuous quantities takes place at the same distance from C . 

Hereinafter we will need certain relations between thicknesses for discon- 

tinuous functions 5 and 

cpr 

The quantities A,, and 

cp, which are linearly Interrelated by 

= Atjfj + B,, IAijj#O (1.9) 
8, are independent of xs . 

Lemma 1. If the ahock lager thlcimeeaes h+ and h- are the same 

for all functions jl, then the thlckneeses ht+ and h*- for all f%InCtiOns 

cpl will also be h+ and h', respectively. 

Lemma 2. If all functions YJ vary In a similar manner within the 

shock layer, 1.e. if fJ- I,*- d,fd] , then the functions 9, also vary In 
a similar manner inside the shock layer, wlth pl,- cp,+-v[m*] , and the same 



1228 A. D. Chamyshov 

shock layer thickness Is obtained for all the functions f, and 9, 

h = 1 i IQ, h+ = - v* i v,~*? h-- = (1 -t Y*) / v,s* (1.10) 

From these Lemmas it follows that, within small strain accuracy, all dis- 

continuous quantltles Inside a shock layer propagating in an elastic medium, 

vary in a similar manner, and have the same thicknesses. 

In order to obtain the basic equations for the purpose of studylng the 

shock wave structure, Equations (1.1) and (1.2) are integrated with respect 

to xg . Taking into account (1.7), we obtain 

P (% - G) =. C _ tp, C = p+ (usi - G) (f.11) 

(1.12) 

The lntegrand in (1.10) is finite, and the interval of integration is 

small, so that cp Is small. For the same reason, the first integral (1.12) 

IS small. The second integral In (1.12) is small, because cp is small. 

Thus, ep and VPI are small functions defined within the shock layer. 

Noting that, for a shock wave of zero thickness, the dynamic conditions 

for the discontinuities [73 are given by 

[p (us - G)l = 0, [(si3 - Cql = 0 (1.15) 

we may consider the immediately preceding equations to be a first approxima- 

tion for shock waves of small thickness. Hence, we conclude from (1.11) and 

(1.13) that m and cpi vanish on both fronts of the shock layer. Assuming 

that these functions are nonzero everywhere within the shock layer, we may 

approximate these functions by parabolas, obtaining 

(1.16) 

The quantities cp and cpI become Identically zero for one-dlmensional 

steady flow. These SUEL~~ functions make an essential contribution for a 

shock wave with small discontlnuities, when their values in (1.11) and (1.13) 

increase. 

For h, h, and hi4 - 0 , (1.11) and (1.13) become (1.16), provided cp 

and cp,"O. To satisfy this condition, It is sufficient that the lntegrands 

In (1.12) and (1.14) be finite everywhere inside the shock layer, which In 
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turn requires the boundedness of: 

a) density 

b) tangential velocity components on X 

c) stresses on any element of area lying on C 8 with arbitrary IlOm81. 

For one-dimensional flow, two of the preceding conditions are satisfied 

independently of the properties of the medium. In that case, If the constl- 

tutlve equations do not preclude the possibility of the existence OS shock 

waves of zero thickness, then the propagation of such waves la possible. 

In the solution of the viscous flow problem within the shook layer, It is 
assumed that the values of p, vi and u,, on the leading and trailing shock 
fronts, respectively, coincide with the values of these quantities in front 
and behind the shock wave as obtained from the nonviscous flow problem; thus, 
the viscous effects are zero on both fronts. Consequently, the problem con- 
cerning the structure of the shock wave Is reduced to the determination of 
viscous effects as a function of position within the shock wave, these effects 
vanishing at both shock fronts where ~-f h_'. 

If Q, cp, and nonlinear terms are neglected in (1.11),(1.13) and In the 
constltutlve equations of the Kelvin medium, we find that the viscous effects 
vanish Identically within the shock layer. Then the problem OS the structure 
of the shook wave becomes meaningless. Therefore, It 10 necessary, in Sor- 
mulatinz the Droblem on the shock wave structure. to include the nonlinear 
terms in the equations pertaining to the structure of the shock layer. Hence 
It follows that the thickness and structure of a shock wave In a Kelvin 
medium.are second order effects. 

2, In hypoelastlc, elasto-plastic and many other media It Is impossible to 

determine the speed of propagation of shock waves C8j. We will show for the 

hypoelastic medium that by adjoining a viscous element in parallel with the 

hypoelastic element and utilizing the theory on shook wave structure the 

Indeterminacy can be removed. 

The constitutive equations for a hypoelastlc medium may be written in the 

form c91 
(2-l) 

Following Jaumann, covarlant differentiation with respect to time in a 

moving coordinate system yields 

Daij _ -- 
Dt (u3-C) Cii,3 + uaQij,a + g Qlj (b&i - U&k) - ul,k) (2.2) 

Dividing (2.1) by (vs- C) and Integrating with respect to X~ from the 

trailing wave front to the leading one, we obtain 

Here 

(3.4) 
“k- I.;- 

If nonlinear terms in (2.1) are neglected, then we must set P,lr= 0 in 

(2.3). In that case, we obtain the same shock waves as In a llnear elastic 

medium. If the Influence of nonlinear terms In (2.1) Is to be taken Into 

account, then Pijk and J, must be evaluated. In that case, the inltlal 
assumption is made that '&he Slow taking place Inside the shock wave is 
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vi8cou8, the corresponding rheofoglcal model 

hypoelaatlc element and a viscous element in 

Upon solving the problem concerning shock 

consisting of a combination of 

parallel. 

wave structure, integration of 

(2.4) yields PIJk and J, . Then, letting the coefficient of viscosity go 

to zero, we obtain the llmltlng values of the above quantities, the shock 

wave thickness again becoming zero. 

Completing the investigation of the shock wave structure and neglecting 

nonlinear terms In the constitutive equations (2.1), then utilizing Lemma 2, 

we obtain Vi--- "if 
-pJ--= 

b*j - 5jij+ 

[%il 
= Y(G, q, --l<Y<O (2.5) 

Substituting (2.5) into (2.4).for ct~~] # 0 , we obtain 

If Cu,l-0, then (2.4) yields 

(2.7) 

Conaider propagation of the longitudinal shock wave for [ua] = 0 and for 

Cb,l z 0 * In that case, pii= = J, z 0 , and consequently, the rotation of 
the medium does not affect the shock waves propagation. Solving (1.15) 

together with (2.3) and (2.6), we obtain 

For given vg* and p-,(2.8) yields two values, y, and ga , correspond- 

ing to two possible propagation speeds of longitudinal shock wave In hypo- 

elastic media. It la readily establlahed that g12 1 , YaS1 * A study of 

these inequalities reveals that the first condition is realized if uJ- 1s 

between vl+ and G , while the second condition is realized If u3+ is 

It 
between vf- and G . Analysis of (2.8) also 

~ 

shows that either us* and uJ- are both 

greater or they are both smaller than G . 

0 

Fig. 1 

!lhe relationship between shock wave speed 

and Jump magnitude is shown In Flg.1, where 

v and p are as given In (2.8). 

Y For transverse shock wave propagation, 

Equations (1.15), (2.3) and (2.7) lead to 

{w+* - ((Js* - 2p (vs - G)2 + 2~) S,,} Ivpl = 0 

Setting the determinant of this system equal to zero, we obtain (2.10) 

2p (G - uJ2 = 2y - (all* + ut2* - 2os3*) k ((oI1* - ffzz*J2 + (2fJ1e*)~~‘~ 

It follows from (2.10) that transverse shock waves may propagate In a 

hypoelastlc medium with two speeds which are close to the speed of transverse 

sound waves and independent of the hydrostatic pressure. 
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The 

The 

Iu,.,l 
may be 

Let us examine the structure of a transverse shock wave In a Kelvin 

[lo], for which [u~,~] I 0 . The defining equations take the form 

0i.j = (hekk + EE*k)6ij + 2p2eij + 2qEij (3.1) 
Almansl tensor of finite deformation Is given by [9] 

2tTi.i Z Ui,j + Uj,i- Uk,iUk,j (3.2) 
coordinate system In the rlrP plane Is oriented so hs to make 

-0. The expression for the speed In terms of the distortion tensor 

obtained from 

6"i 
L'i = T - Gui.3 + VkUi,k (3.3) 

Substituting (3.1) Into (1.13) and making use of (3.2) and (3.3), we 

obtain 

~~173 = B (u1,3 - q3-9 (u1,3 - q3-) - ‘pu1 - [p1 (3.4) 

B = -$ (1 - l(l,l) {u2,1~3, a + ~3, I(1 - uz, 2)) 

Here h Is the determinant of the system of Equations (3.3). 

For the steady case, (3.4) yields a quadratic equation from which the 

shock layer thlctiess h may be determined 

Here 
ah2 + B h,312h - Y h,al = 0 (3.5) 

(3.6) 
a = A (G - v3) u~,~* - A,, r = 4q (G - v3), A = p (v, - G) [74,311 

A1 = - $ P (G-v~)~ 1~:,3l,, + ~(G--3)v2 1~1,321 -- pu’,, Iz (C - u3) [Ul, 31 

Of the two roots obtained, h, and ha , the positive Is to be chosen. 

Integrating (3.4), we obtain the variation of u1 across the shock layer, 

while the variation of cls as function of r, is obtained from (3.1). The 

remaining velocity and stress components are continuous within small strain 

accuracy. The effect of the small quantities p and 'pl on the shock layer 

thickness In (3.5) Is Indicated by the coefficient Q. . 

The propagation and structure of shock waves In elastoplaatlc media may 

be Investigated In a similar manner, by adjoining various viscous elements 

to the rheologlcal model. 
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